七叶笔记 » golang编程 » 阿里 双11 同款,流量防卫兵Sentinel go源码解读

阿里 双11 同款,流量防卫兵Sentinel go源码解读

作者 | 于雨 apache/dubbo-go 项目负责人

本文作者系 apache/dubbo-go 项目负责人,目前在 dubbogo 项目中已内置可用 sentinel-go,若有疑问可进 dubbogo 社区【钉钉群 23331795】进行沟通。

1 基本概念 Resource 和 Rule

1.1 Resource

     // ResourceType represents classification of the resources
    type ResourceType int32

     const  (
        ResTypeCommon ResourceType = iota
        ResTypeWeb
        ResTypeRPC
    )

    // TrafficType describes the traffic type: Inbound or Outbound
    type TrafficType int32

    const (
        // Inbound represents the inbound traffic (e.g. provider)
        Inbound TrafficType = iota
        // Outbound represents the outbound traffic (e.g. consumer)
        Outbound
    )

    // ResourceWrapper represents the invocation
    type ResourceWrapper struct {
        // global unique resource name
        name string
        // resource classification
        classification ResourceType
        // Inbound or Outbound
        flowType TrafficType
    }  

Resource(ResourceWrapper) 存储了应用场景 ResourceType,以及目标流控的方向 FlowType(TrafficType)。

1.2 Entry

     // EntryOptions represents the options of a Sentinel resource entry.
    type EntryOptions struct {
        resourceType base.ResourceType
        entryType    base.TrafficType
        acquireCount uint32
        slotChain    *base.SlotChain
    }

    type EntryContext struct {
        entry *SentinelEntry

        // Use to calculate RT
        startTime uint64

        Resource *ResourceWrapper
        Stat node  StatNode

        Input *SentinelInput
        // the result of rule slots check
        RuleCheckResult *TokenResult
    }

    type SentinelEntry struct {
        res *ResourceWrapper
        // one entry bounds with one context
         ctx  *EntryContext

        sc *SlotChain
    }  

Entry 实体 SentinelEntry 关联了 Resource(ResourceWrapper) 以及其流控规则集合 SlotChain。每个 Entry 实体有一个上下文环境 EntryContext,存储每个 Rule 检测时用到的一些流控参数和流控判定结果。

值得注意的是,SentinelEntry.sc 值来自于 EntryOptions.slotChain,EntryOptions.slotChain 存储了全局 SlotChain 对象 api/slot_chain.go:globalSlotChain。

至于何为 SlotChain,就是 sentinel 提供的所有的流控组件的集合,可以简单地认为每个流控组件就是一个 Slot,其详细分析见[[3.5 SlotChain]](#3.5)。

sentinel 一些变量和函数命名的可读性较差,如 EntryOptions.acquireCount 实在无法让人望文生义,看过函数 core/api.go:WithAcquireCount() 的注释才明白:EntryOptions.acquireCount 是批量动作执行次数。如有的一次 RPC 请求中调用了服务端的一个服务接口,则取值 1【也是 EntryOptions.acquireCount 的默认取值】,如果调用了服务端的 3 个服务接口,则取值 3。所以建议改名为 EntryOptions.batchCount 比较好,考虑到最小改动原则,可以在保留 core/api.go:WithAcquireCount() 的同时增加一个同样功能的 core/api.go:WithBatchCount() 接口。相关改进已经提交到 pr 263。

1.3 Rule

     type TokenCalculateStrategy int32
    const (
        Direct TokenCalculateStrategy = iota
        WarmUp
    )

    type ControlBehavior int32
    const (
        Reject ControlBehavior = iota
        Throttling
    )

    // Rule describes the strategy of flow control, the flow control strategy is based on QPS statistic metric
    type Rule struct {
        // Resource represents the resource name.
        Resource               string                 `json:"resource"`
        ControlBehavior        ControlBehavior        `json:"controlBehavior"`
        // Threshold means the threshold during StatIntervalInMs
        // If StatIntervalInMs is 1000(1 second), Threshold means QPS
        Threshold         float64          `json:"threshold"`
        MaxQueueingTimeMs uint32           `json:"maxQueueingTimeMs"`
        // StatIntervalInMs indicates the statistic interval and it's the optional setting for flow Rule.
        // If user doesn't set StatIntervalInMs, that means using default metric statistic of resource.
        // If the StatIntervalInMs user specifies can not reuse the global statistic of resource,
        //         sentinel will generate independent statistic structure for this rule.
        StatIntervalInMs uint32 `json:"statIntervalInMs"`
    }  

Rule 记录了某 Resource 的限流判定阈值 Threshold、限流时间窗口计时长度 StatIntervalInMs 以及 触发限流后的判罚动作 ControlBehavior。

上面核心是 Rule 的接口 RuleCheckSlot,至于 StatSlot 则用于统计 sentinel 自身的运行 metrics。

1.4 Flow

当前章节主要分析流控中的限流(core/flow),根据流控的处理流程梳理 sentinel 整体骨架。

1.4.1 TrafficShapingController

所谓 TrafficShapingController,顾名思义,就是 流量塑形控制器,是流控的具体实施者。

     // core/flow/traffic_shaping.go

    // TrafficShapingCalculator calculates the actual traffic shaping threshold
    // based on the threshold of rule and the traffic shaping strategy.
    type TrafficShapingCalculator interface {
        CalculateAllowedTokens(acquireCount uint32, flag int32) float64
    }

    type DirectTrafficShapingCalculator struct {
        threshold float64
    }

    func (d *DirectTrafficShapingCalculator) CalculateAllowedTokens(uint32, int32) float64 {
        return d.threshold
    }  

TrafficShapingCalculator 接口用于计算限流的上限,如果不使用 warm-up 功能,可以不去深究其实现,其实体之一 DirectTrafficShapingCalculator 返回 Rule.Threshold【用户设定的限流上限】。

     // TrafficShapingChecker performs checking according to current metrics and the traffic
    // shaping strategy, then yield the token result.
    type TrafficShapingChecker interface {
        DoCheck(resStat base.StatNode, acquireCount uint32, threshold float64) *base.TokenResult
    }

    type RejectTrafficShapingChecker struct {
        rule  *Rule
    }

    func (d *RejectTrafficShapingChecker) DoCheck(resStat base.StatNode, acquireCount uint32, threshold float64) *base.TokenResult {
        metricReadonlyStat := d.BoundOwner().boundStat.readOnlyMetric
        if metricReadonlyStat == nil {
            return nil
        }
        curCount := float64(metricReadonlyStat.GetSum(base.MetricEventPass))
        if curCount+float64(acquireCount) > threshold {
            return base.NewTokenResultBlockedWithCause(base.BlockTypeFlow, "", d.rule, curCount)
        }
        return nil
    }  

RejectTrafficShapingChecker 依据 Rule.Threshold 判定 Resource 在当前时间窗口是否超限,其限流结果 TokenResultStatus 只可能是 Pass 或者 Blocked。

sentinel flow 还有一个匀速限流 ThrottlingChecker,它的目的是让请求匀速被执行,把一个时间窗口【譬如 1s】根据 threshold 再细分为更细的微时间窗口,在每个微时间窗口最多执行一次请求,其限流结果 TokenResultStatus 只可能是 Pass 或者 Blocked 或者 Wait,其相关意义分别为:

  • Pass:在微时间窗口内无超限,请求通过;
  • Wait:在微时间窗口内超限,被滞后若干时间窗口执行,在这段时间内请求需要等待;
  • Blocked:在微时间窗口内超限,且等待时间超过用户设定的最大愿意等待时间长度【Rule.MaxQueueingTimeMs】,请求被拒绝。
     type TrafficShapingController struct {
        flowCalculator TrafficShapingCalculator
        flowChecker    TrafficShapingChecker

        rule *Rule
        // boundStat is the statistic of current TrafficShapingController
        boundStat standaloneStatistic
    }

    func (t *TrafficShapingController) PerformChecking(acquireCount uint32, flag int32) *base.TokenResult {
        allowedTokens := t.flowCalculator.CalculateAllowedTokens(acquireCount, flag)
        return t.flowChecker.DoCheck(resStat, acquireCount, allowedTokens)
    }  

在 Direct + Reject 限流的场景下,这三个接口其实并无多大意义,其核心函数 TrafficShapingController.PerformChecking() 的主要流程是:

  • 1 从 TrafficShapingController.boundStat 中获取当前 Resource 的 metrics 值【curCount】;
  • 2 如果 curCount + batchNum(acquireCount) > Rule.Threshold,则 pass,否则就 reject。

在限流场景下, TrafficShapingController 四个成员的意义如下:

  • flowCalculator 计算限流上限;
  • flowChecker 执行限流 Check 动作;
  • rule 存储限流规则;
  • boundStat 存储限流的 Check 结果和时间窗口参数,作为下次限流 Check 动作判定的依据。

1.4.2 TrafficControllerMap

在执行限流判定时,需要根据 Resource 名称获取其对应的 TrafficShapingController。

    // TrafficControllerMap represents the map storage for TrafficShapingController.
   type TrafficControllerMap map[string][]*TrafficShapingController
    // core/flow/rule_manager.go
    tcMap        = make(TrafficControllerMap)  

package 级别全局私有变量 tcMap 存储了所有的 Rule,其 key 为 Resource 名称,value 则是与 Resource 对应的 TrafficShapingController。

用户级别接口函数 core/flow/rule_manager.go:LoadRules() 会根据用户定义的 Rule 构造其对应的 TrafficShapingController 存入 tcMap,这个接口调用函数 generateStatFor(*Rule) 构造 TrafficShapingController.boundStat。

限流场景下,函数 generateStatFor(*Rule) 的核心代码如下:

     func generateStatFor(rule *Rule) (*standaloneStatistic, error) {
        resNode = stat.GetOrCreateResourceNode(rule.Resource, base.ResTypeCommon)

        // default case, use the resource's default statistic
        readStat := resNode.DefaultMetric()
        retStat.reuseResourceStat = true
        retStat.readOnlyMetric = readStat
        retStat.writeOnlyMetric = nil
        return &retStat, nil
    }  

2 Metrics

Resource 的指标 Metrics 是进行 Rule 判定的基础。

2.1 原子时间轮 AtomicBucketWrapArray

Sentinel 库功能丰富,但无论是限流还是熔断,其存储基础都是滑动时间窗口。其间包含了众多优化:如无锁定长时间轮。

滑动窗口实现有很多种,时间轮算法是其中一种比较简单的实现,在时间轮算法之上可以实现多种限流方法。时间轮整体框图如下:

1 BucketWrap

时间轮的最基本单元是一个桶【时间窗口】。

     // BucketWrap represent a slot to record metrics
    // In order to reduce the usage of memory, BucketWrap don't hold length of BucketWrap
    // The length of BucketWrap could be seen in LeapArray.
    // The scope of time is [startTime, startTime+bucketLength)
    // The size of BucketWrap is 24(8+16) bytes
    type BucketWrap struct {
        // The start timestamp of this statistic bucket wrapper.
        BucketStart uint64
        // The actual data structure to record the metrics (e.g. MetricBucket).
        Value atomic.Value
    }  

补充 :这里之所以用指针,是因为以 BucketWrap 为基础的 AtomicBucketWrapArray 会被多个 sentinel 流控组件使用,每个组件的流控参数不一,例如:

  • 1 core/circuitbreaker/circuit_breaker.go:slowRtCircuitBreaker 使用的 slowRequestLeapArray 的底层参数 slowRequestCounter
       // core/circuitbreaker/circuit_breaker.go
    type slowRequestCounter struct {
        slowCount  uint64
        totalCount uint64
    }  
  • 2 core/circuitbreaker/circuit_breaker.go:errorRatioCircuitBreaker 使用的 errorCounterLeapArray 的底层参数 errorCounter
     // core/circuitbreaker/circuit_breaker.go
    type errorCounter struct {
        errorCount uint64
        totalCount uint64
    }  

1.1 MetricBucket

BucketWrap 可以认作是一种 时间桶模板,具体的桶的实体是 MetricsBucket,其定义如下:

     // MetricBucket represents the entity to record metrics per minimum time unit (i.e. the bucket time span).
    // Note that all operations of the MetricBucket are required to be thread-safe.
    type MetricBucket struct {
        // Value of statistic
        counter [base.MetricEventTotal]int64
        minRt   int64
    }  

MetricBucket 存储了五种类型的 metric:

     // There are five events to record
    // pass + block == Total
    const (
        // sentinel rules check pass
        MetricEventPass MetricEvent = iota
        // sentinel rules check block
        MetricEventBlock

        MetricEventComplete
        // Biz error, used for circuit breaker
        MetricEventError
        // request execute rt, unit is millisecond
        MetricEventRt
        // hack for the number of event
        MetricEventTotal
    )  

2 AtomicBucketWrapArray

每个桶只记录了其起始时间和 metric 值,至于每个桶的时间窗口长度这种公共值则统一记录在 AtomicBucketWrapArray 内,AtomicBucketWrapArray 定义如下:

     // atomic BucketWrap array to resolve race condition
    // AtomicBucketWrapArray can not append or delete element after initializing
    type AtomicBucketWrapArray struct {
        // The base address for real data array
        base unsafe.Pointer
        // The length of slice(array), it can not be modified.
        length int
        data   []*BucketWrap
    }  

AtomicBucketWrapArray.base 的值是 AtomicBucketWrapArray.data slice 的 data 区域的首指针。因为 AtomicBucketWrapArray.data 是一个固定长度的 slice,所以 AtomicBucketWrapArray.base 直接存储数据内存区域的首地址,以加速访问速度。

其次,AtomicBucketWrapArray.data 中存储的是 BucketWrap 的指针,而不是 BucketWrap。

NewAtomicBucketWrapArrayWithTime() 函数会预热一下,把所有的时间桶都生成出来。

2.2 时间轮

1 leapArray

     // Give a diagram to illustrate
    // Suppose current time is 888, bucketLengthInMs is 200ms,
    // intervalInMs is 1000ms, LeapArray will build the below windows
    //   B0       B1      B2     B3      B4
    //   |_______|_______|_______|_______|_______|
    //  1000    1200    1400    1600    800    (1000)
    //                                        ^
    //                                      time=888
    type LeapArray struct {
        bucketLengthInMs uint32
        sampleCount      uint32
        intervalInMs     uint32
        array            *AtomicBucketWrapArray
        // update lock
        updateLock mutex
    }  

LeapArray 各个成员解析:

  • bucketLengthInMs 是漏桶长度,以毫秒为单位;
  • sampleCount 则是时间漏桶个数;
  • intervalInMs 是时间窗口长度,以毫秒为单位。

其注释中的 ASCII 图很好地解释了每个字段的含义。

LeapArray 核心函数是 LeapArray.currentBucketOfTime(),其作用是根据某个时间点获取其做对应的时间桶 BucketWrap,代码如下:

     func (la *LeapArray) currentBucketOfTime(now uint64, bg BucketGenerator) (*BucketWrap, error) {
        if now <= 0 {
            return nil, errors.New("Current time is less than 0.")
        }

        idx := la.calculateTimeIdx(now)
        bucketStart := calculateStartTime(now, la.bucketLengthInMs)

        for { //spin to get the current BucketWrap
            old := la.array.get(idx)
            if old == nil {
                // because la.array.data had initiated when new la.array
                // theoretically, here is not reachable
                newWrap := &BucketWrap{
                    BucketStart: bucketStart,
                    Value:       atomic.Value{},
                }
                newWrap.Value.Store(bg.NewEmptyBucket())
                if la.array.compareAndSet(idx, nil, newWrap) {
                    return newWrap, nil
                } else {
                    runtime.Gosched()
                }
            } else if bucketStart == atomic.LoadUint64(&old.BucketStart) {
                return old, nil
            } else if bucketStart > atomic.LoadUint64(&old.BucketStart) {
                // current time has been next cycle of LeapArray and LeapArray dont't count in last cycle.
                // reset BucketWrap
                if la.updateLock.TryLock() {
                    old = bg.ResetBucketTo(old, bucketStart)
                    la.updateLock.Unlock()
                    return old, nil
                } else {
                    runtime.Gosched()
                }
            } else if bucketStart < atomic.LoadUint64(&old.BucketStart) {
                // TODO: reserve for some special case (e.g. when occupying "future" buckets).
                return nil, errors.New(fmt.Sprintf("Provided time timeMillis=%d is already behind old.BucketStart=%d.", bucketStart, old.BucketStart))
            }
        }
    }  

其 for-loop 核心逻辑是:

  • 1 获取时间点对应的时间桶 old;
  • 2 如果 old 为空,则新建一个时间桶,以原子操作的方式尝试存入时间窗口的时间轮中,存入失败则重新尝试;
  • 3 如果 old 就是当前时间点所在的时间桶,则返回;
  • 4 如果 old 的时间起点小于当前时间,则通过乐观锁尝试 reset 桶的起始时间等参数值,加锁更新成功则返回;
  • 5 如果 old 的时间起点大于当前时间,则系统发生了时间扭曲,返回错误。

2 BucketLeapArray

leapArray 实现了滑动时间窗口的所有主体,其对外使用接口则是 BucketLeapArray:

     // The implementation of sliding window based on LeapArray (as the sliding window infrastructure)
    // and MetricBucket (as the data type). The MetricBucket is used to record statistic
    // metrics per minimum time unit (i.e. the bucket time span).
    type BucketLeapArray struct {
        data     LeapArray
        dataType string
    }  

从这个 struct 的注释可见,其时间窗口 BucketWrap 的实体是 MetricBucket。

2.3 Metric 数据读写

SlidingWindowMetric

     // SlidingWindowMetric represents the sliding window metric wrapper.
    // It does not store any data and is the wrapper of BucketLeapArray to adapt to different internal bucket
    // SlidingWindowMetric is used for SentinelRules and BucketLeapArray is used for monitor
    // BucketLeapArray is per resource, and SlidingWindowMetric support only read operation.
    type SlidingWindowMetric struct {
        bucketLengthInMs uint32
        sampleCount      uint32
        intervalInMs     uint32
        real             *BucketLeapArray
    }  

SlidingWindowMetric 是对 BucketLeapArray 的一个封装,只提供了只读接口。

ResourceNode

     type BaseStatNode struct {
        sampleCount uint32
        intervalMs  uint32

        goroutineNum int32

        arr    *sbase.BucketLeapArray
        metric *sbase.SlidingWindowMetric
    }

    type ResourceNode struct {
        BaseStatNode

        resourceName string
        resourceType base.ResourceType
    }

    // core/stat/node_storage.go
    type ResourceNodeMap map[string]*ResourceNode
    var (
        inboundNode = NewResourceNode(base.TotalInBoundResourceName, base.ResTypeCommon)

        resNodeMap = make(ResourceNodeMap)
        rnsMux     = new(sync.RWMutex)
    )  

BaseStatNode 对外提供了读写接口,其数据写入 BaseStatNode.arr,读取接口则依赖 BaseStatNode.metric。BaseStatNode.arr 是在 NewBaseStatNode() 中创建的,指针 SlidingWindowMetric.real 也指向它。

ResourceNode 则顾名思义,其代表了某资源和它的 Metrics 存储 ResourceNode.BaseStatNode。

全局变量 resNodeMap 存储了所有资源的 Metrics 指标数据。

3 限流流程

本节只分析 Sentinel 库提供的最基础的流量整形功能 — 限流,限流算法多种多样,可以使用其内置的算法,用户自己也可以进行扩展。

限流过程有三步步骤:

  • 1 针对特定 Resource 构造其 EntryContext,存储其 Metrics、限流开始时间等,Sentinel 称之为 StatPrepareSlot;
  • 2 依据 Resource 的限流算法判定其是否应该进行限流,并给出限流判定结果,Sentinel 称之为 RuleCheckSlot;补充:这个限流算法是一系列判断方法的合集(SlotChain);
  • 3 判定之后,除了用户自身根据判定结果执行相应的 action,Sentinel 也需要根据判定结果执行自身的 Action,以及把整个判定流程所使用的的时间 RT 等指标存储下来,Sentinel 称之为 StatSlot。

整体流程如下图所示:

3.1 Slot

针对 Check 三个步骤,有三个对应的 Slot 分别定义如下:

     // StatPrepareSlot is responsible for some preparation before statistic
    // For example: init structure and so on
    type StatPrepareSlot interface {
        // Prepare function do some initialization
        // Such as: init statistic structure、node and etc
        // The result of preparing would store in EntryContext
        // All StatPrepareSlots execute in sequence
        // Prepare function should not throw panic.
        Prepare(ctx *EntryContext)
    }

    // RuleCheckSlot is rule based checking strategy
    // All checking rule must implement this interface.
    type RuleCheckSlot interface {
        // Check function do some validation
        // It can break off the slot pipeline
        // Each TokenResult will return check result
        // The upper logic will control pipeline according to SlotResult.
        Check(ctx *EntryContext) *TokenResult
    }

    // StatSlot is responsible for counting all custom biz metrics.
    // StatSlot would not handle any panic, and pass up all panic to slot chain
    type StatSlot interface {
        // OnEntryPass function will be invoked when StatPrepareSlots and RuleCheckSlots execute pass
        // StatSlots will do some statistic logic, such as QPS、log、etc
        OnEntryPassed(ctx *EntryContext)
        // OnEntryBlocked function will be invoked when StatPrepareSlots and RuleCheckSlots fail to execute
        // It may be inbound flow control or outbound cir
        // StatSlots will do some statistic logic, such as QPS、log、etc
        // blockError introduce the block detail
        OnEntryBlocked(ctx *EntryContext, blockError *BlockError)
        // OnCompleted function will be invoked when chain exits.
        // The semantics of OnCompleted is the entry passed and completed
        // Note: blocked entry will not call this function
        OnCompleted(ctx *EntryContext)
    }  

抛却 Prepare 和 Stat,可以简单的认为:所谓的 slot,就是 sentinel 提供的某个流控组件。

值得注意的是,根据注释 StatSlot.OnCompleted 只有在 RuleCheckSlot.Check 通过才会执行,用于计算从请求开始到结束所使用的 RT 等 Metrics。

3.2 Prepare

     // core/base/slot_chain.go
    // StatPrepareSlot is responsible for some preparation before statistic
    // For example: init structure and so on
    type StatPrepareSlot interface {
        // Prepare function do some initialization
        // Such as: init statistic structure、node and etc
        // The result of preparing would store in EntryContext
        // All StatPrepareSlots execute in sequence
        // Prepare function should not throw panic.
        Prepare(ctx *EntryContext)
    }

    // core/stat/stat_prepare_slot.go
    type ResourceNodePrepareSlot struct {
    }

    func (s *ResourceNodePrepareSlot) Prepare(ctx *base.EntryContext) {
        node := GetOrCreateResourceNode(ctx.Resource.Name(), ctx.Resource.Classification())
        // Set the resource node to the context.
        ctx.StatNode = node
    }  

如前面解释,Prepare 主要是构造存储 Resource Metrics 所使用的 ResourceNode。所有 Resource 的 StatNode 都会存储在 package 级别的全局变量 core/stat/node_storage.go:resNodeMap [type: map[string]*ResourceNode] 中,函数 GetOrCreateResourceNode 用于根据 Resource Name 从 resNodeMap 中获取其对应的 StatNode,如果不存在则创建一个 StatNode 并存入 resNodeMap。

3.3 Check

RuleCheckSlot.Check() 执行流程:

  • 1 根据 Resource 名称获取其所有的 Rule 集合;
  • 2 遍历 Rule 集合,对 Resource 依次执行 Check,任何一个 Rule 判定 Resource 需要进行限流【Blocked】则返回,否则放行。
     type Slot struct {
    }

    func (s *Slot) Check(ctx *base.EntryContext) *base.TokenResult {
        res := ctx.Resource.Name()
        tcs := getTrafficControllerListFor(res)
        result := ctx.RuleCheckResult

        // Check rules in order
        for _, tc := range tcs {
            r := canPassCheck(tc, ctx.StatNode, ctx.Input.AcquireCount)
            if r == nil {
                // nil means pass
                continue
            }
            if r.Status() == base.ResultStatusBlocked {
                return r
            }
            if r.Status() == base.ResultStatusShouldWait {
                if waitMs := r.WaitMs(); waitMs > 0 {
                    // Handle waiting action.
                    time.Sleep(time.Duration(waitMs) * time.Millisecond)
                }
                continue
            }
        }
        return result
    }

    func canPassCheck(tc *TrafficShapingController, node base.StatNode, acquireCount uint32) *base.TokenResult {
        return canPassCheckWithFlag(tc, node, acquireCount, 0)
    }

    func canPassCheckWithFlag(tc *TrafficShapingController, node base.StatNode, acquireCount uint32, flag int32) *base.TokenResult {
        return checkInLocal(tc, node, acquireCount, flag)
    }

    func checkInLocal(tc *TrafficShapingController, resStat base.StatNode, acquireCount uint32, flag int32) *base.TokenResult {
        return tc.PerformChecking(resStat, acquireCount, flag)
    }  

3.4 Exit

sentinel 对 Resource 进行 Check 后,其后续逻辑执行顺序是:

  • 1 如果 RuleCheckSlot.Check() 判定 pass 通过则执行 StatSlot.OnEntryPassed(),否则 RuleCheckSlot.Check() 判定 reject 则执行 StatSlot.OnEntryBlocked();
  • 2 如果 RuleCheckSlot.Check() 判定 pass 通过,则执行本次 Action;
  • 3 如果 RuleCheckSlot.Check() 判定 pass 通过,则执行 SentinelEntry.Exit() –> SlotChain.ext() –> StatSlot.OnCompleted() 。

第三步骤的调用链路如下:

StatSlot.OnCompleted()

     // core/flow/standalone_stat_slot.go
    type StandaloneStatSlot struct {
    }

    func (s StandaloneStatSlot) OnEntryPassed(ctx *base.EntryContext) {
        res := ctx.Resource.Name()
        for _, tc := range getTrafficControllerListFor(res) {
            if !tc.boundStat.reuseResourceStat {
                if tc.boundStat.writeOnlyMetric != nil {
                    tc.boundStat.writeOnlyMetric.AddCount(base.MetricEventPass, int64(ctx.Input.AcquireCount))
                }
            }
        }
    }

    func (s StandaloneStatSlot) OnEntryBlocked(ctx *base.EntryContext, blockError *base.BlockError) {
        // Do nothing
    }

    func (s StandaloneStatSlot) OnCompleted(ctx *base.EntryContext) {
        // Do nothing
    }  

SlotChain.exit()

     // core/base/slot_chain.go
    type SlotChain struct {
    }

    func (sc *SlotChain) exit(ctx *EntryContext) {
        // The OnCompleted is called only when entry passed
        if ctx.IsBlocked() {
            return
        }
        for _, s := range sc.stats {
            s.OnCompleted(ctx)
        }
    }  

SentinelEntry.Exit()

     // core/base/entry.go
    type SentinelEntry struct {
        sc *SlotChain
        exitCtl sync.Once
    }

    func (e *SentinelEntry) Exit() {
        e.exitCtl.Do(func() {
            if e.sc != nil {
                e.sc.exit(ctx)
            }
        })
    }  

从上面执行可见,StatSlot.OnCompleted() 是在 Action 【如一次 RPC 的请求-响应 Invokation】完成之后调用的。如果有的组件需要计算一次 Action 的时间耗费 RT,就在其对应的 StatSlot.OnCompleted() 中依据 EntryContext.startTime 完成时间耗费计算。

[3.5 SlotChain]()

Sentinel 本质是一个流控包,不仅提供了限流功能,还提供了众多其他诸如自适应流量保护、熔断降级、冷启动、全局流量 Metrics 结果等功能流控组件,Sentinel-Go 包定义了一个 SlotChain 实体存储其所有的流控组件。

    // core/base/slot_chain.go

    // SlotChain hold all system slots and customized slot.
    // SlotChain support plug-in slots developed by developer.
    type SlotChain struct {
        statPres   []StatPrepareSlot
        ruleChecks []RuleCheckSlot
        stats      []StatSlot
    }

    // The entrance of slot chain
    // Return the TokenResult and nil if internal panic.
    func (sc *SlotChain) Entry(ctx *EntryContext) *TokenResult {
        // execute prepare slot
        sps := sc.statPres
        if len(sps) > 0 {
            for _, s := range sps {
                s.Prepare(ctx)
            }
        }

        // execute rule based checking slot
        rcs := sc.ruleChecks
        var ruleCheckRet *TokenResult
        if len(rcs) > 0 {
            for _, s := range rcs {
                sr := s.Check(ctx)
                if sr == nil {
                    // nil equals to check pass
                    continue
                }
                // check slot result
                if sr.IsBlocked() {
                    ruleCheckRet = sr
                    break
                }
            }
        }
        if ruleCheckRet == nil {
            ctx.RuleCheckResult.ResetToPass()
        } else {
            ctx.RuleCheckResult = ruleCheckRet
        }

        // execute statistic slot
        ss := sc.stats
        ruleCheckRet = ctx.RuleCheckResult
        if len(ss) > 0 {
            for _, s := range ss {
                // indicate the result of rule based checking slot.
                if !ruleCheckRet.IsBlocked() {
                    s.OnEntryPassed(ctx)
                } else {
                    // The block error should not be nil.
                    s.OnEntryBlocked(ctx, ruleCheckRet.blockErr)
                }
            }
        }
        return ruleCheckRet
    }

    func (sc *SlotChain) exit(ctx *EntryContext) {
        if ctx == nil || ctx.Entry() == nil {
            logging.Error(errors.New("nil EntryContext or SentinelEntry"), "")
            return
        }
        // The OnCompleted is called only when entry passed
        if ctx.IsBlocked() {
            return
        }
        for _, s := range sc.stats {
            s.OnCompleted(ctx)
        }
        // relieve the context here
    }  

建议 :Sentinel 包针对某个 Resource 无法确知其使用了那个组件,在运行时会针对某个 Resource 的 EntryContext 依次执行所有的组件的 Rule。Sentinel-golang 为何不给用户相关用户提供一个接口让其设置使用的流控组件集合,以减少下面函数 SlotChain.Entry() 中执行 RuleCheckSlot.Check() 执行次数?相关改进已经提交到 pr 264【补充,代码已合并,据负责人压测后回复 sentinel-go 效率整体提升 15%】。

globalSlotChain

Sentinel-Go 定义了一个 SlotChain 的 package 级别的全局私有变量 globalSlotChain 用于存储其所有的流控组件对象。相关代码示例如下。因本文只关注限流组件,所以下面只给出了限流组件的注册代码。

    // api/slot_chain.go

    func BuildDefaultSlotChain() *base.SlotChain {
        sc := base.NewSlotChain()
        sc.AddStatPrepareSlotLast(&stat.ResourceNodePrepareSlot{})

        sc.AddRuleCheckSlotLast(&flow.Slot{})

        sc.AddStatSlotLast(&flow.StandaloneStatSlot{})

        return sc
    }

    var globalSlotChain = BuildDefaultSlotChain()  

Entry

在 Sentinel-Go 对外的最重要的入口函数 api/api.go:Entry() 中,globalSlotChain 会作为 EntryOptions 的 SlotChain 参数被使用。

     // api/api.go

    // Entry is the basic API of Sentinel.
    func Entry(resource string, opts ...EntryOption) (*base.SentinelEntry, *base.BlockError) {
        options := entryOptsPool.Get().(*EntryOptions)
        options.slotChain = globalSlotChain

        return entry(resource, options)
    }  

Sentinel 的演进离不开社区的贡献。Sentinel Go 1.0 GA 版本即将在近期发布,带来更多云原生相关的特性。我们非常欢迎感兴趣的开发者参与贡献,一起来主导未来版本的演进。我们鼓励任何形式的贡献,包括但不限于:

• bug fix
• new features/improvements
• dashboard
• document/website
• test cases

开发者可以在 GitHub 上面的 good first issue 列表上挑选感兴趣的 issue 来参与讨论和贡献。我们会重点关注积极参与贡献的开发者,核心贡献者会提名为 Committer,一起主导社区的发展。我们也欢迎大家有任何问题和建议,都可以通过 GitHub issue、Gitter 或钉钉群(群号:30150716)等渠道进行交流。Now start hacking!

• Sentinel Go repo:
• 企业用户欢迎进行登记:

作者简介

于雨(github @AlexStocks) ,apache/dubbo-go 项目负责人,一个有十多年服务端基础架构研发一线工作经验的程序员,目前在蚂蚁金服可信原生部从事容器编排和 service mesh 工作。热爱开源,从 2015 年给 Redis 贡献代码开始,陆续改进过 Muduo/Pika/Dubbo/Dubbo-go 等知名项目。

“阿里巴巴云原生关注微服务、Serverless、容器、Service Mesh 等技术领域、聚焦云原生流行技术趋势、云原生大规模的落地实践,做最懂云原生开发者的公众号。”

相关文章