缓存穿透(缓存击穿) 通过互斥锁防止db攻击
1.互斥锁解决
public String get(key) {
String value = redis.get(key);
if (value == null) { //代表缓存值过期
//设置3min的超时,防止del操作失败的时候,下次缓存过期一直不能load db
if (redis.setnx(key_mutex, 1, 3 * 60) == 1) { //代表设置成功
value = db.get(key);
redis.set(key, value, expire_secs);
redis.del(key_mutex);
} else {
//这个时候代表同时候的其他线程已经load db并回设到缓存了,这时候重试获取缓存值即可
sleep(50);
get(key); //重试
}
} else {
return value;
}
}
2.布隆过滤器把非法的key直接过滤掉,返回空
缓存雪崩
1:在缓存失效后,通过加锁或者队列来控制读数据库写缓存的线程数量。比如对某个key只允许一个线程查询数据和写缓存,其他线程等待。
2:不同的key,设置不同的过期时间,让缓存失效的时间点尽量均匀。
3:做二级缓存,A1为原始缓存,A2为拷贝缓存,A1失效时,可以访问A2,A1缓存失效时间设置为短期,A2设置为长期.
4: 缓存定时更新不由接口控制
缓存并发问题
这里的并发指的是多个redis的client同时set key引起的并发问题。比较有效的解决方案就是把redis.set操作放在队列中使其串行化,必须的一个一个执行,具体的代码就不上了,当然加锁也是可以的,至于为什么不用redis中的事务,留给各位看官自己思考探究。
redis常见性能问题和解决方案:
Master最好不要做任何持久化工作,如RDB内存快照和AOF日志文件
如果数据比较重要,某个Slave开启AOF备份数据,策略设置为每秒同步一次
为了主从复制的速度和连接的稳定性,Master和Slave最好在同一个局域网内
尽量避免在压力很大的主库上增加从库
Redis中海量数据的正确操作方式
利用SCAN系列命令(SCAN、SSCAN、HSCAN、ZSCAN)完成数据迭代。
Redis 管道 Pipeline
在某些场景下我们在一次操作中可能需要执行多个命令,而如果我们只是一个命令一个命令去执行则会浪费很多网络消耗时间,如果将命令一次性传输到 Redis中去再执行,则会减少很多开销时间。但是需要注意的是 pipeline中的命令并不是原子性执行的,也就是说管道中的命令到达 Redis服务器的时候可能会被其他的命令穿插
(echo -en "PING\r\n SET runoobkey redis\r\nGET runoobkey\r\nINCR visitor\r\nINCR visitor\r\nINCR visitor\r\n"; sleep 10) | nc localhost 6379
go实现pipeline
package main
import (
"github.com/go-redis/redis"
"log"
"strconv"
)
func main() {
client := redis.NewClient(&redis.Options{
Addr: "localhost:6379",
Password: "", // no password set
DB: 0, // use default DB
Network: "tcp",
PoolSize: 50,
})
if _, err := client.Ping().Result(); err != nil {
panic(err)
}
pipe := client.Pipeline()
pipe.Get("key1")
pipe.Get("key2")
pipe.Get("key3")
result, err := pipe.Exec()
defer client.Close()
}
Redis Module 实现布隆过滤器
Redis module 是 Redis 4.0 以后支持的新的特性,这里很多国外牛逼的大学和机构提供了很多牛逼的Module 只要编译引入到Redis 中就能轻松的实现我们某些需求的功能。在Redis 官方Module 中有一些我们常见的一些模块,我们在这里就做一个简单的使用。
- neural-redis 主要是神经网络的机器学,集成到redis 可以做一些机器训练感兴趣的可以尝试
- RedisSearch 主要支持一些富文本的的搜索
- RedisBloom 支持分布式环境下的Bloom 过滤器
Redis 到底是怎么实现“附近的人”
使用方式
GEOADD key longitude latitude member [longitude latitude member ...]
将给定的位置对象(纬度、经度、名字)添加到指定的key。其中,key为集合名称,member为该经纬度所对应的对象。在实际运用中,当所需存储的对象数量过多时,可通过设置多key(如一个省一个key)的方式对对象集合变相做sharding,避免单集合数量过多。
成功插入后的返回值:
(integer) N
其中N为成功插入的个数。