
Go 系列教程是非常棒的一套初学者教程,入门就它了。
这是 Golang 系列教程 中的第18 篇。在本章教程中,我们将讨论 Go 语言中的接口第一部分。
什么是接口?
在面向对象的领域里,接口一般这样定义: 接口定义一个对象的行为 。接口只指定了对象应该做什么,至于如何实现这个行为(即实现细节),则由对象本身去确定。
在 Go 语言中,接口就是方法签名(Method Signature)的集合。当一个类型定义了接口中的所有方法,我们称它实现了该接口。这与面向对象编程(OOP)的说法很类似。 接口指定了一个类型应该具有的方法,并由该类型决定如何实现这些方法 。
例如,WashingMachine 是一个含有 Cleaning() 和 Drying() 两个方法的接口。任何定义了 Cleaning()和 Drying() 的类型,都称它实现了 WashingMachine 接口。
接口的声明与实现
让我们编写代码,创建一个接口并且实现它。


在上面程序的第 8 行,创建了一个名为 VowelsFinder 的接口,该接口有一个 FindVowels() []rune 的方法。
在接下来的一行,我们创建了一个 MyString 类型。
在第 15 行,我们给接受者类型(Receiver Type) MyString 添加了方法 FindVowels() []rune。现在,我们称 MyString 实现了 VowelsFinder 接口。这就和其他语言(如 Java )很不同,其他一些语言要求一个类使用 implement 关键字,来显式地声明该类实现了接口。而在 Go 中,并不需要这样。如果一个类型包含了接口中声明的所有方法,那么它就隐式地实现了 Go 接口 。
在第 28 行,v 的类型为 VowelsFinder,name 的类型为 MyString,我们把 name 赋值给了 v。由于 MyString 实现了 VowelFinder,因此这是合法的。在下一行,v.FindVowels() 调用了 MyString 类型的 FindVowels 方法,打印字符串 Sam Anderson 里所有的元音。该程序输出 Vowels are [a e o]。
祝贺!你已经创建并实现了你的第一个接口。
接口的实际用途
前面的例子教我们创建并实现了接口,但还没有告诉我们接口的实际用途。在上面的程序里,如果我们使用 name.FindVowels(),而不是 v.FindVowels(),程序依然能够照常运行,但接口并没有体现出实际价值。
因此,我们现在讨论一下接口的实际应用场景。
我们编写一个简单程序,根据公司员工的个人薪资,计算公司的总支出。为了简单起见,我们假定支出的单位都是美元。



上面程序的第 7 行声明了一个 SalaryCalculator 接口类型,它只有一个方法 CalculateSalary() int。
在公司里,我们有两类员工,即第 11 行和第 17 行定义的结构体:Permanent 和 Contract。长期员工(Permanent)的薪资是 basicpay 与 pf 相加之和,而合同员工(Contract)只有基本工资 basicpay。在第 23 行和第 28 行中,方法 CalculateSalary 分别实现了以上关系。由于 Permanent 和 Contract 都声明了该方法,因此它们都实现了 SalaryCalculator 接口。
第 36 行声明的 totalExpense 方法体现出了接口的妙用。该方法接收一个 SalaryCalculator 接口的切片([]SalaryCalculator)作为参数。在第 49 行,我们向 totalExpense 方法传递了一个包含 Permanent和 Contact 类型的切片。在第 39 行中,通过调用不同类型对应的 CalculateSalary 方法,totalExpense 可以计算得到支出。
这样做最大的优点是:totalExpense 可以扩展新的员工类型,而不需要修改任何代码。假如公司增加了一种新的员工类型 Freelancer,它有着不同的薪资结构。Freelancer只需传递到 totalExpense 的切片参数中,无需 totalExpense 方法本身进行修改。只要 Freelancer 也实现了 SalaryCalculator 接口,totalExpense 就能够实现其功能。
该程序输出 Total Expense Per Month $14050。
接口的内部表示
我们可以把接口看作内部的一个元组 (type, value)。 type 是接口底层的具体类型(Concrete Type),而 value 是具体类型的值。
我们编写一个程序来更好地理解它。


Test 接口只有一个方法 Tester(),而 MyFloat 类型实现了该接口。在第 24 行,我们把变量 f(MyFloat 类型)赋值给了 t(Test 类型)。现在 t 的具体类型为 MyFloat,而 t 的值为 89.7。第 17 行的 describe 函数打印出了接口的具体类型和值。该程序输出:
Interface type main.MyFloat value 89.7 89.7
空接口
没有包含方法的接口称为空接口。空接口表示为 interface{}。由于空接口没有方法,因此所有类型都实现了空接口。

在上面的程序的第 7 行,describe(i interface{}) 函数接收空接口作为参数,因此,可以给这个函数传递任何类型。
在第 13 行、第 15 行和第 21 行,我们分别给 describe 函数传递了 string、int 和 struct。该程序打印:
Type = string, value = Hello World Type = int, value = 55 Type = struct { name string }, value = {Naveen R}
类型断言
类型断言用于提取接口的底层值(Underlying Value)。
在语法 i.(T) 中,接口 i 的具体类型是 T,该语法用于获得接口的底层值。
一段代码胜过千言。下面编写个关于类型断言的程序。

在第 12 行,s 的具体类型是 int。在第 8 行,我们使用了语法 i.(int) 来提取 i 的底层 int 值。该程序会打印 56。
在上面程序中,如果具体类型不是 int,会发生什么呢?接下来看看。

在上面程序中,我们把具体类型为 string 的 s 传递给了 assert 函数,试图从它提取出 int 值。该程序会报错:panic: interface conversion: interface {} is string, not int.。
要解决该问题,我们可以使用以下语法:
v, ok := i.(T)
如果 i 的具体类型是 T,那么 v 赋值为 i 的底层值,而 ok 赋值为 true。
如果 i 的具体类型不是 T,那么 ok 赋值为 false,v 赋值为 T 类型的零值, 此时程序不会报错 。

当给 assert 函数传递 Steven Paul 时,由于 i 的具体类型不是 int,ok 赋值为 false,而 v 赋值为 0(int 的零值)。该程序打印:
56 true 0 false
类型选择(Type Switch)
类型选择用于将接口的具体类型与很多 case 语句所指定的类型进行比较。它与一般的 switch 语句类似。唯一的区别在于类型选择指定的是类型,而一般的 switch 指定的是值。
类型选择的语法类似于类型断言。类型断言的语法是 i.(T),而对于类型选择,类型 T 由关键字 type 代替。下面看看程序是如何工作的。

在上述程序的第 8 行,switch i.(type) 表示一个类型选择。每个 case 语句都把 i 的具体类型和一个指定类型进行了比较。如果 case 匹配成功,会打印出相应的语句。该程序输出:
I am a string and my value is Naveen I am an int and my value is 77 Unknown type
第 20 行中的 89.98 的类型是 float64,没有在 case 上匹配成功,因此最后一行打印了 Unknown type。
还可以将一个类型和接口相比较。如果一个类型实现了接口,那么该类型与其实现的接口就可以互相比较 。
为了阐明这一点,下面写一个程序。


在上面程序中,结构体 Person 实现了 Describer 接口。在第 19 行的 case 语句中,v 与接口类型 Describer 进行了比较。p 实现了 Describer,因此满足了该 case 语句,于是当程序运行到第 32 行的 findType(p) 时,程序调用了 Describe() 方法。
该程序输出:
unknown type Naveen R is 25 years old
接口(一)的内容到此结束。在接口(二)中我们还会继续讨论接口。祝您愉快!
上一教程 –
下一教程 – 接口 – II