七叶笔记 » golang编程 » 性能优化实战:百万级WebSockets和Go语言

性能优化实战:百万级WebSockets和Go语言

大家好!我的名字叫 Sergey Kamardin。我是来自 Mail.Ru 的一名工程师。这篇文章将讲述我们是如何用 Go 语言开发一个高负荷的 WebSocket 服务。即使你对 WebSockets 熟悉但对 Go 语言知之甚少,我还是希望这篇文章里讲到的性能优化的思路和技术对你有所启发。

介绍

作为全文的铺垫,我想先讲一下我们为什么要开发这个服务。

Mail.Ru 有许多包含状态的系统。用户的电子邮件存储是其中之一。有很多办法来跟踪这些状态的改变。不外乎通过定期的轮询或者系统通知来得到状态的变化。这两种方法都有它们的优缺点。对邮件这个产品来说,让用户尽快收到新的邮件是一个考量指标。邮件的轮询会产生大概每秒5万个 HTTP 请求,其中60%的请求会返回304状态(表示邮箱没有变化)。因此,为了减少服务器的负荷并加速邮件的接收,我们决定重写一个 publisher-subscriber 服务(这个服务通常也会称作 bus,message broker 或者 event-channel)。这个服务负责接收状态更新的通知,然后还处理对这些更新的订阅。

重写 publisher-subscriber 服务之前:

现在:

上面第一个图为旧的架构。浏览器(Browser)会定期轮询 API 服务来获得邮件存储服务(Storage)的更新。

第二张图展示的是新的架构。浏览器(Browser)和通知 API 服务(notificcation API)建立一个 WebSocket 连接。通知 API 服务会发送相关的订阅到 Bus 服务上。当收到新的电子邮件时,存储服务(Storage)向Bus(1)发送一个通知,Bus 又将通知发送给相应的订阅者(2)。API 服务为收到的通知找到相应的连接,然后把通知推送到用户的浏览器(3)。

我们今天就来讨论一下这个 API 服务(也可以叫做 WebSocket 服务)。在开始之前,我想提一下这个在线服务处理将近3百万个连接。

惯用的做法(The idiomatic way )

首先,我们看一下不做任何优化会如何用 Go 来实现这个服务的部分功能。在使用 net/http 实现具体功能前,让我们先讨论下我们将如何发送和接收数据。这些数据是定义在 WebSocket 协议之上的(例如 JSON 对象)。我们在下文中会成他们为 packet。

我们先来实现 Channel 结构。它包含相应的逻辑来通过 WebScoket 连接发送和接收 packet。

ch annel 结构

// Packet represents application level data.
type Packet struct {
 ...
}
// Channel wraps user connection.
type Channel struct {
 conn net.Conn // WebSocket connection.
 send chan Packet // Outgoing packets queue.
}
func NewChannel(conn net.Conn) *Channel {
 c := &Channel{
 conn: conn,
 send: make(chan Packet, N),
 }
 go c.reader()
 go c.writer()
 return c
} 

这里我要强调的是读和写这两个 goroutines。每个 goroutine 都需要各自的内存栈。栈的初始大小由操作系统和 Go 的版本决定,通常在 2KB 到 8KB 之间。我们之前提到有3百万个在线连接,如果每个 goroutine 栈需要 4KB 的话,所有连接就需要 24GB 的内存。这还没算上给 Channel 结构,发送 packet 用的 ch.send 和其它一些内部字段分配的内存空间。

◆ I/O goroutines

接下来看一下“reader”的实现:

func (c *Channel) reader() {
 // We make a buffered read to reduce read syscalls.
 buf := bufio.NewReader(c.conn)
 for {
 pkt, _ := readPacket(buf)
 c.handle(pkt)
 }
} 

这里我们使用了 bufio.Reader。每次都会在 buf 大小允许的范围内尽量读取多的字节,从而减少 read() 系统调用的次数。在无限循环中,我们期望会接收到新的数据。请记住之前这句话:期望接收到新的数据。我们之后会讨论到这一点。

我们把 packet 的解析和处理逻辑都忽略掉了,因为它们和我们要讨论的优化不相关。不过 buf 值得我们的关注:它的缺省大小是4KB。这意味着所有连接将消耗掉额外的12 GB内存。“writer”也是类似的情况:

func (c *Channel) writer() {
 // We make buffered write to reduce write syscalls.
 buf := bufio.NewWriter(c.conn)
 for pkt := range c.send {
 _ := writePacket(buf, pkt)
 buf.Flush()
 }
} 

我们在待发送 packet 的 c.send channel 上循环将 packet 写到 缓存 (buffer)里。细心的读者肯定已经发现,这又是额外的4KB内存。3百万个连接会占用12GB的内存。

◆ HTTP

我们已经有了一个简单的 Channel 实现。现在我们需要一个 WebSocket 连接。因为还在通常做法(Idiomatic Way)的标题下,那么就先来看看通常是如何实现的。

注:如果你不知道 WebSocket 是怎么工作的,那么这里值得一提的是客户端是通过一个叫升级(Upgrade)请求的特殊 HTTP 机制来建立 WebSocket的。在成功处理升级请求以后,服务端和客户端使用 TCP 连接来交换二进制的 WebSocket 帧(frames)。这里有关于帧结构的描述。

import (
 "net/http"
 "some/websocket"
)
http.HandleFunc("/v1/ws", func(w http.ResponseWriter, r *http. Request ) {
 conn, _ := websocket.Upgrade(r, w)
 ch := NewChannel(conn)
 //...
}) 

请注意这里的 http.ResponseWriter 结构包含 bufio.Reader 和bufio.Writer(各自分别包含4KB的缓存)。它们用于 \*http.Request 初始化和返回结果。

不管是哪个 WebSocket,在成功回应一个升级请求之后,服务端在调用responseWriter.Hijack() 之后会接收到一个 I/O 缓存和对应的 TCP 连接。

注:有时候我们可以通过 net/http.putBufio{Reader,Writer} 调用把缓存释放回 net/http 里的 sync.Pool。

这样,这3百万个连接又需要额外的24 GB内存。

所以,为了这个什么都不干的程序,我们已经占用了72 GB的内存!

优化

我们来回顾一下前面介绍的用户连接的工作流程。在建立 WebSocket 之后,客户端会发送请求订阅相关事件(我们这里忽略类似 ping/pong 的请求)。接下来,在整个连接的生命周期里,客户端可能就不会发送任何其它数据了。

连接的生命周期可能会持续几秒钟到几天。

所以在大部分时间里,Channel.reader() 和 Channel.writer() 都在等待接收和发送数据。与它们一起等待的是各自分配的4 KB的I/O缓存。

现在,我们发现有些地方是可以做进一步优化的,对吧?

◆ Netpoll

你还记得 Channel.reader() 的实现使用了 bufio.Reader.Read() 吗?bufio.Reader.Read() 又会调用 conn.Read()。这个调用会被阻塞以等待接收连接上的新数据。如果连接上有新的数据,Go 的运行环境(runtime)就会唤醒相应的 goroutine 让它去读取下一个 packet。之后,goroutine 会被再次阻塞来等待新的数据。我们来研究下 Go 的运行环境是怎么知道 goroutine需要被唤醒的。

如果我们看一下 conn.Read() 的实现,就会看到它调用 net.netFD.Read():

// net/fd_unix.go
func (fd *netFD) Read(p []byte) (n int, err error) {
 //...
 for {
 n, err = syscall.Read(fd.sysfd, p)
 if err !=  nil  {
 n = 0
 if err == syscall.EAGAIN {
 if err = fd.pd.waitRead(); err == nil {
 continue
 }
 }
 }
 //...
 break
 }
 //...
} 

Go 使用了 sockets 的非阻塞模式。EAGAIN 表示 socket 里没有数据了但不会阻塞在空的 socket 上,OS 会把控制权返回给用户进程。

这里它首先对连接文件描述符进行 read() 系统调用。如果 read() 返回的是EAGAIN 错误,运行环境就是调用 pollDesc.waitRead():

// net/fd_poll_runtime.go
func (pd *pollDesc) waitRead() error {
 return pd.wait('r')
}
func (pd *pollDesc) wait(mode int) error {
 res := runtime_pollWait(pd.runtimeCtx, mode)
 //...
} 

如果继续深挖,我们可以看到 netpoll 的实现在 Linux 里用的是 epoll 而在 BSD 里用的是 kqueue。我们的这些连接为什么不采用类似的方式呢?只有在 socket 上有可读数据时,才分配缓存空间并启用读数据的 goroutine。

在 github.com/golang/go 上,有一个关于开放(exporting)netpoll 函数的问题。

◆ 干掉 goroutines

假设我们用 Go 语言实现了 netpoll。我们现在可以避免创 Channel.reader() 的 goroutine,取而代之的是从订阅连接里收到新数据的事件。

ch := NewChannel(conn)
// Make conn to be observed by netpoll instance.
poller.Start(conn, netpoll.EventRead, func() {
 // We spawn goroutine here to prevent poller wait loop
 // to become locked during receiving packet from ch.
 go ch.Receive()
})
// Receive reads a packet from conn and handles it somehow.
func (ch *Channel) Receive() {
 buf := bufio.NewReader(ch.conn)
 pkt := readPacket(buf)
 c.handle(pkt)
} 

Channel.writer() 相对容易一点,因为我们只需在发送 packet 的时候创建 goroutine 并分配缓存。

func (ch *Channel) Send(p Packet) {
 if c.noWriterYet() {
 go ch.writer()
 }
 ch.send <- p
} 

注意,这里我们没有处理 write() 系统调用时返回的 EAGAIN。我们依赖 Go 运行环境去处理它。这种情况很少发生。如果需要的话我们还是可以像之前那样来处理。

从 ch.send 读取待发送的 packets 之后,ch.writer() 会完成它的操作,最后释放 goroutine 的栈和用于发送的缓存。

很不错!通过避免这两个连续运行的 goroutine 所占用的 I/O 缓存和栈内存,我们已经节省了48 GB。

◆ 控制资源

大量的连接不仅仅会造成大量的内存消耗。在开发服务端的时候,我们还不停地遇到竞争条件(race conditions)和死锁(deadlocks)。随之而来的是所谓的自我分布式阻断攻击(self-DDOS)。在这种情况下,客户端会悍然地尝试重新连接服务端而把情况搞得更加糟糕。

举个例子,如果因为某种原因我们突然无法处理 ping/pong 消息,这些空闲连接就会不断地被关闭(它们会以为这些连接已经无效因此不会收到数据)。然后客户端每N秒就会以为失去了连接并尝试重新建立连接,而不是继续等待服务端发来的消息。

在这种情况下,比较好的办法是让负载过重的服务端停止接受新的连接,这样负载均衡器(例如nginx)就可以把请求转到其它的服务端上去。

撇开服务端的负载不说,如果所有的客户端突然(很可能是因为某个bug)向服务端发送一个 packet,我们之前节省的 48 GB 内存又将会被消耗掉。因为这时我们又会和开始一样给每个连接创建 goroutine 并分配缓存。

Goroutine 池

可以用一个 goroutine 池来限制同时处理 packets 的数目。下面的代码是一个简单的实现:

package gopool
func New(size int) *Pool {
 return &Pool{
 work: make(chan func()),
 sem: make(chan struct{}, size),
 }
}
func (p *Pool)  Schedule (task func()) error {
 select {
 case p.work <- task:
 case p.sem <- struct{}{}:
 go p.worker(task)
 }
}
func (p *Pool) worker(task func()) {
 defer func() { <-p.sem }
 for {
 task()
 task = <-p.work
 }
} 

我们使用 netpoll 的代码就变成下面这样:

pool := gopool.New(128)
poller.Start(conn, netpoll.EventRead, func() {
 // We will block poller wait loop when
 // all pool workers are busy.
 pool.Schedule(func() {
 ch.Receive()
 })
}) 

现在我们不仅要等可读的数据出现在 socket 上才能读 packet,还必须等到从池里获取到空闲的 goroutine。

同样的,我们修改下 Send() 的代码:

pool := gopool.New(128)
func (ch *Channel) Send(p Packet) {
 if c.noWriterYet() {
 pool.Schedule(ch.writer)
 }
 ch.send <- p
} 

这里我们没有调用 go ch.writer(),而是想重复利用池里 goroutine 来发送数据。 所以,如果一个池有 N 个 goroutines 的话,我们可以保证有 N 个请求被同时处理。而 N + 1 个请求不会分配 N + 1 个缓存。goroutine 池允许我们限制对新连接的 Accept() 和 Upgrade(),这样就避免了大部分 DDoS 的情况。

零拷贝 升级(Zero-copy upgrade)

之前已经提到,客户端通过 HTTP 升级(Upgrade)请求切换到 WebSocket协议。下面显示的是一个升级请求:

GET /ws HTTP/1.1
Host: mail.ru
Connect io n: Upgrade
Sec-Websocket-Key: A3xNe7sEB9HixkmBhVrYaA==
Sec-Websocket-Version: 13
Upgrade: websocket
HTTP/1.1 101 Switching Protocols
Connection: Upgrade
Sec-Websocket-Accept: ksu0wXWG+YmkVx+KQR2agP0cQn4=
Upgrade: websocket 

我们接收 HTTP 请求和它的头部只是为了切换到 WebSocket 协议,而 http.Request 里保存了所有头部的数据。从这里可以得到启发,如果是为了优化,我们可以放弃使用标准的 net/http 服务并在处理 HTTP 请求的时候避免无用的内存分配和拷贝。

举个例子,http.Request 包含了一个叫做 Header 的字段。标准 net/http 服务会将请求里的所有头部数据全部无条件地拷贝到 Header 字段里。你可以想象这个字段会保存许多冗余的数据,例如一个包含很长 cookie 的头部。

我们如何来优化呢?

WebSocket 实现

不幸的是,在我们优化服务端的时候所有能找到的库只支持对标准 net/http 服务做升级。而且没有一个库允许我们实现上面提到的读和写的优化。为了使这些优化成为可能,我们必须有一套底层的 API 来操作 WebSocket。为了重用缓存,我们需要类似下面这样的协议函数:

func ReadFrame(io.Reader) (Frame, error)
func WriteFrame(io.Writer, Frame) error 

如果我们有一个包含这样 API 的库,我们就按照下面的方式从连接上读取 packets:

// getReadBuf, putReadBuf are intended to
// reuse *bufio.Reader (with sync.Pool for example).
func getReadBuf(io.Reader) *bufio.Reader
func putReadBuf(*bufio.Reader)
// readPacket must be called when data could be read from conn.
func readPacket(conn io.Reader) error {
 buf := getReadBuf()
 defer putReadBuf(buf)
 buf.Reset(conn)
 frame, _ := ReadFrame(buf)
 parsePacket(frame.Payload)
 //...
} 

简而言之,我们需要自己写一个库。

github.com/gobwas/ws

ws 库的主要设计思想是不将协议的操作逻辑暴露给用户。所有读写函数都接受通用的 io.Reader 和 io.Writer 接口。因此它可以随意搭配是否使用缓存以及其它 I/O 的库。

除了标准库 net/http 里的升级请求,ws 还支持零拷贝升级。它能够处理升级请求并切换到 WebSocket 模式而不产生任何内存分配或者拷贝。

ws.Upgrade() 接受 io.ReadWriter(net.Conn 实现了这个接口)。换句话说,我们可以使用标准的 net.Listen() 函数然后把从 ln.Accept() 收到的连接马上交给 ws.Upgrade() 去处理。库也允许拷贝任何请求数据来满足将来应用的需求(举个例子,拷贝 Cookie 来验证一个 session)。

下面是处理升级请求的性能测试:标准 net/http 库的实现和使用零拷贝升级的 net.Listen():

BenchmarkUpgradeHTTP 5156 ns/op 8576 B/op 9 allocs/op
BenchmarkUpgradeTCP 973 ns/op 0 B/op 0 allocs/op 

使用 ws 以及零拷贝升级为我们节省了24 GB的空间。这些空间原本被用做 net/http 里处理请求的 I/O 缓存。

◆ 回顾

让我们来回顾一下之前提到过的优化:

  • 一个包含缓存的读 goroutine 会占用很多内存。方案: netpoll(epoll, kqueue);重用缓存。

  • 一个包含缓存的写 goroutine 会占用很多内存。方案: 在需要的时候创建goroutine;重用缓存。

  • 存在大量连接请求的时候,netpoll 不能很好的限制连接数。方案: 重用 goroutines 并且限制它们的数目。

  • net/http 对升级到 WebSocket 请求的处理不是最高效的。方案: 在 TCP 连接上实现零拷贝升级。

下面是服务端的大致实现代码:

import (
 "net"
 "github.com/gobwas/ws"
)
ln, _ := net.Listen("tcp", ":8080")
for {
 // Try to accept incoming connection inside free pool worker.
 // If there no free workers for 1ms, do not accept anything and try later.
 // This will help us to prevent many self-ddos or out of resource limit cases.
 err := pool.ScheduleTimeout(time.Millisecond, func() {
 conn := ln.Accept()
 _ = ws.Upgrade(conn)
 // Wrap WebSocket connection with our Channel struct.
 // This will help us to handle/send our app's packets.
 ch := NewChannel(conn)
 // Wait for incoming bytes from connection.
 poller.Start(conn, netpoll.EventRead, func() {
 // Do not cross the resource limits.
 pool.Schedule(func() {
 // Read and handle incoming packet(s).
 ch.Recevie()
 })
 })
 })
 if err != nil {
 time.Sleep(time.Millisecond)
 }
} 

结论

在程序设计时,过早优化是万恶之源。Donald Knuth

上面的优化是有意义的,但不是所有情况都适用。举个例子,如果空闲资源(内存,CPU)与在线连接数之间的比例很高的话,优化就没有太多意义。当然,知道什么地方可以优化以及如何优化总是有帮助的。

引用

相关文章