rook简介
容器的 持久化 存储 容器的持久化存储是保存容器存储状态的重要手段,存储插件会在容器里挂载一个基于网络或者其他机制的远程数据卷,使得在容器里创建的文件,实际上是保存在远程存储服务器上,或者以分布式的方式保存在多个节点上,而与当前宿主机没有任何绑定关系。这样,无论你在其他哪个宿主机上启动新的容器,都可以请求挂载指定的持久化存储卷,从而访问到数据卷里保存的内容。 由于 kubernetes 本身的松耦合设计,绝大多数存储项目,比如 Ceph、GlusterFS、NFS 等,都可以为 Kubernetes 提供持久化存储能力。
ceph 分布式存储系统 Ceph是一种高度可扩展的分布式存储解决方案,提供对象、文件和块存储。在每个存储节点上,您将找到Ceph存储对象的文件系统和Ceph OSD(对象存储守护程序)进程。在Ceph集群上,您还可以找到Ceph MON(监控)守护程序,它们确保Ceph集群保持高可用性。
Rook Rook 是一个开源的cloud-native storage编排, 提供平台和框架;为各种存储解决方案提供平台、框架和支持,以便与云原生环境本地集成。 Rook 将存储软件转变为自我管理、自我扩展和自我修复的存储服务,它通过自动化部署、引导、配置、置备、扩展、升级、迁移、灾难恢复、监控和资源管理来实现此目的。 Rook 使用底层云本机容器管理、调度和编排平台提供的工具来实现它自身的功能。 Rook 目前支持Ceph、NFS、Minio Object Store和CockroachDB。
Rook使用Kubernetes原语使Ceph存储系统能够在Kubernetes上运行。下图说明了Ceph Rook如何与Kubernetes集成:
随着Rook在Kubernetes集群中运行,Kubernetes应用程序可以挂载由Rook管理的块设备和文件系统,或者可以使用S3 / Swift API提供对象存储。Rook oprerator自动配置存储组件并监控群集,以确保存储处于可用和健康状态。
Rook oprerator是一个简单的容器,具有引导和监视存储集群所需的全部功能。oprerator将启动并监控ceph monitor pods和OSDs的守护进程,它提供基本的RADOS存储。oprerator通过初始化运行服务所需的pod和其他组件来管理池,对象存储(S3 / Swift)和文件系统的CRD。
oprerator将监视存储后台驻留程序以确保群集正常运行。Ceph mons将在必要时启动或故障转移,并在群集增长或缩小时进行其他调整。oprerator还将监视api服务请求的所需状态更改并应用更改。 Rook oprerator还创建了Rook agent。这些agent是在每个Kubernetes节点上部署的pod。每个agent都配置一个Flexvolume插件,该插件与Kubernetes的volume controller集成在一起。处理节点上所需的所有存储操作,例如附加网络存储设备,安装卷和格式化文件系统。
该rook容器包括所有必需的Ceph守护进程和工具来管理和存储所有数据 – 数据路径没有变化。 rook并没有试图与Ceph保持完全的忠诚度。 许多Ceph概念(如placement groups和crush maps)都是隐藏的,因此您无需担心它们。 相反,Rook为管理员创建了一个简化的用户体验,包括物理资源,池,卷,文件系统和buckets。 同时,可以在需要时使用Ceph工具应用高级配置。 Rook在golang中实现。Ceph在C ++中实现,其中数据路径被高度优化。我们相信这种组合可以提供两全其美的效果。
部署环境准备
root项目地址: rook官方参考文档:
kubernetes集群准备 kubeadm部署3节点kubernetes1.13.1集群(,master节点x1,node节点x2),集群部署参考:
集群节点信息:
192.168.92.56 k8s-master 192.168.92.57 k8s-node1 192.168.92.58 k8s-node2
在集群中至少有三个节点可用,满足ceph高可用要求,这里已配置master节点使其支持运行pod。
rook使用存储方式 rook默认使用所有节点的所有资源,rook operator自动在所有节点上启动OSD设备,Rook会用如下标准监控并发现可用设备:
设备没有分区
设备没有格式化的文件系统
Rook不会使用不满足以上标准的设备。另外也可以通过修改配置文件,指定哪些节点或者设备会被使用。
添加新磁盘 这里在所有节点添加1块50GB的新磁盘:/dev/sdb,作为OSD盘,提供存储空间,添加完成后扫描磁盘,确保主机能够正常识别到:
#扫描 SCSI总线并添加 SCSI 设备
for host in $(ls /sys/class/scsi_host) ; do echo "- - -" > /sys/class/scsi_host/$host/scan; done
#重新扫描 SCSI 总线
for scsi_device in $(ls /sys/class/scsi_device/); do echo 1 > /sys/class/scsi_device/$scsi_device/device/rescan; done
#查看已添加的磁盘,能够看到sdb说明添加成功
lsblk
无另外说明,以下全部操作都在master节点执行。
部署Rook Operator
克隆rook github仓库到本地
git clone cd rook/cluster/examples/kubernetes/ceph/
执行yaml文件部署rook系统组件:
[ centos @k8s-master ceph]$ kubectl apply -f operator.yaml
namespace/rook-ceph-system created
customresourcedefinition.apiextensions.k8s.io/cephclusters.ceph.rook.io created
customresourcedefinition.apiextensions.k8s.io/cephfilesystems.ceph.rook.io created
customresourcedefinition.apiextensions.k8s.io/cephobjectstores.ceph.rook.io created
customresourcedefinition.apiextensions.k8s.io/cephobjectstoreusers.ceph.rook.io created
customresourcedefinition.apiextensions.k8s.io/cephblockpools.ceph.rook.io created
customresourcedefinition.apiextensions.k8s.io/volumes.rook.io created
clusterrole.rbac.authorization.k8s.io/rook-ceph-cluster-mgmt created
role.rbac.authorization.k8s.io/rook-ceph-system created
clusterrole.rbac.authorization.k8s.io/rook-ceph-global created
clusterrole.rbac.authorization.k8s.io/rook-ceph-mgr-cluster created
serviceaccount/rook-ceph-system created
rolebinding.rbac.authorization.k8s.io/rook-ceph-system created
clusterrolebinding.rbac.authorization.k8s.io/rook-ceph-global created
deployment.apps/rook-ceph-operator created
[centos@k8s-master ~]$
如上所示,它会创建如下资源:
1、namespace:rook-ceph-system,之后的所有rook相关的pod都会创建在该namespace下面
2、CRD:创建五个CRDs,.ceph.rook.io
3、role & clusterrole:用户资源控制
4、serviceaccount:ServiceAccount资源,给Rook创建的Pod使用
5、deployment:rook-ceph-operator,部署rook ceph相关的组件
部署rook-ceph-operator过程中,会触发以DaemonSet的方式在集群部署Agent和Discoverpods。 operator会在集群内的每个主机创建两个pod:rook-discover,rook-ceph-agent:
[centos@k8s-master ~]$ kubectl get pod -n rook-ceph-system -o wide NAME READY STATUS RESTARTS AGE IP NODE NOMINATED NODE READINESS GATES rook-ceph-agent-49w7t 1/1 Running 0 7m48s 192.168.92.57 k8s-node1 <none> <none> rook-ceph-agent-dpxkq 1/1 Running 0 111s 192.168.92.58 k8s-node2 <none> <none> rook-ceph-agent-wb6r8 1/1 Running 0 7m48s 192.168.92.56 k8s-master <none> <none> rook-ceph-operator-85d64cfb99-2c78k 1/1 Running 0 9m3s 10.244.1.2 k8s-node1 <none> <none> rook-discover-597sk 1/1 Running 0 7m48s 10.244.0.4 k8s-master <none> <none> rook-discover-7h89z 1/1 Running 0 111s 10.244.2.2 k8s-node2 <none> <none> rook-discover-hjdjt 1/1 Running 0 7m48s 10.244.1.3 k8s-node1 <none> <none> [centos@k8s-master ~]$
创建rook Cluster
当检查到Rook operator, agent, and discover pods已经是running状态后,就可以部署roo cluster了。 执行yaml文件结果:
[centos@k8s-master ceph]$ kubectl apply -f cluster.yaml namespace/rook-ceph created serviceaccount/rook-ceph-osd created serviceaccount/rook-ceph-mgr created role.rbac.authorization.k8s.io/rook-ceph-osd created role.rbac.authorization.k8s.io/rook-ceph-mgr-system created role.rbac.authorization.k8s.io/rook-ceph-mgr created rolebinding.rbac.authorization.k8s.io/rook-ceph-cluster-mgmt created rolebinding.rbac.authorization.k8s.io/rook-ceph-osd created rolebinding.rbac.authorization.k8s.io/rook-ceph-mgr created rolebinding.rbac.authorization.k8s.io/rook-ceph-mgr-system created rolebinding.rbac.authorization.k8s.io/rook-ceph-mgr-cluster created cephcluster.ceph.rook.io/rook-ceph created [centos@k8s-master ~]$
如上所示,它会创建如下资源:
1、namespace:rook-ceph,之后的所有Ceph集群相关的pod都会创建在该namespace下
2、serviceaccount:ServiceAccount资源,给Ceph集群的Pod使用
3、role & rolebinding:用户资源控制
4、cluster:rook-ceph,创建的Ceph集群
Ceph集群部署成功后,可以查看到的pods如下,其中osd数量取决于你的节点数量:
[centos@k8s-master ~]$ kubectl get pod -n rook-ceph -o wide NAME READY STATUS RESTARTS AGE IP NODE NOMINATED NODE READINESS GATES rook-ceph-mgr-a-8649f78d9b-hlg7t 1/1 Running 0 3h30m 10.244.2.6 k8s-node2 <none> <none> rook-ceph-mon-a-7c7df4b5bb-984x8 1/1 Running 0 3h31m 10.244.0.5 k8s-master <none> <none> rook-ceph-mon-b-7b9bc8b6c4-8trmz 1/1 Running 0 3h31m 10.244.1.4 k8s-node1 <none> <none> rook-ceph-mon-c-54b5fb5955-5dgr7 1/1 Running 0 3h30m 10.244.2.5 k8s-node2 <none> <none> rook-ceph-osd-0-b9bb5df49-gt4vs 1/1 Running 0 3h29m 10.244.0.7 k8s-master <none> <none> rook-ceph-osd-1-9c6dbf797-2dg8p 1/1 Running 0 3h29m 10.244.2.8 k8s-node2 <none> <none> rook-ceph-osd-2-867ddc447d-xkh7k 1/1 Running 0 3h29m 10.244.1.6 k8s-node1 <none> <none> rook-ceph-osd-prepare-k8s-master-m8tvr 0/2 Completed 0 3h29m 10.244.0.6 k8s-master <none> <none> rook-ceph-osd-prepare-k8s-node1-jf7qz 0/2 Completed 1 3h29m 10.244.1.5 k8s-node1 <none> <none> rook-ceph-osd-prepare-k8s-node2-tcqdl 0/2 Completed 0 3h29m 10.244.2.7 k8s-node2 <none> <none> [centos@k8s-master ~]$
可以看出部署的Ceph集群有:
1、Ceph Monitors:默认启动三个ceph-mon,可以在cluster.yaml里配置
2、Ceph Mgr:默认启动一个,可以在cluster.yaml里配置
3、Ceph OSDs:根据cluster.yaml里的配置启动,默认在所有的可用节点上启动
上述Ceph组件对应kubernetes的kind是deployment:
[centos@k8s-master ~]$ kubectl -n rook-ceph get deployment NAME READY UP-TO-DATE AVAILABLE AGE rook-ceph-mgr-a 1/1 1 1 5h34m rook-ceph-mon-a 1/1 1 1 5h36m rook-ceph-mon-b 1/1 1 1 5h35m rook-ceph-mon-c 1/1 1 1 5h35m rook-ceph-osd-0 1/1 1 1 5h34m rook-ceph-osd-1 1/1 1 1 5h34m rook-ceph-osd-2 1/1 1 1 5h34m [centos@k8s-master ~]$
删除Ceph集群
如果要删除已创建的Ceph集群,可执行下面命令:
# kubectl delete -f cluster.yaml
删除Ceph集群后,在之前部署Ceph组件节点的/ var /lib/rook/目录,会遗留下Ceph集群的配置信息。 若之后再部署新的Ceph集群,先把之前Ceph集群的这些信息删除,不然启动monitor会失败;
# cat clean-rook-dir.sh
hosts=(
k8s-master
k8s-node1
k8s-node2
)
for host in ${hosts[@]} ; do
ssh $host "rm -rf /var/lib/rook/*"
done
配置ceph dashboard
在cluster.yaml文件中默认已经启用了ceph dashboard,查看dashboard的service:
[centos@k8s-master ~]$ kubectl get service -n rook-ceph NAME TYPE CLUSTER-IP EXTERNAL-IP PORT(S) AGE rook-ceph-mgr ClusterIP 10.107.77.188 <none> 9283/TCP 3h33m rook-ceph-mgr-dashboard ClusterIP 10.96.135.98 <none> 8443/TCP 3h33m rook-ceph-mon-a ClusterIP 10.105.153.93 <none> 6790/TCP 3h35m rook-ceph-mon-b ClusterIP 10.105.107.254 <none> 6790/TCP 3h34m rook-ceph-mon-c ClusterIP 10.104.1.238 <none> 6790/TCP 3h34m [centos@k8s-master ~]$
rook-ceph-mgr-dashboard监听的端口是8443,创建nodeport类型的service以便集群外部访问。
kubectl apply -f rook/cluster/examples/kubernetes/ceph/dashboard-external-https.yaml
查看一下nodeport暴露的端口,这里是32483端口:
[centos@k8s-master ~]$ kubectl get service -n rook-ceph | grep dashboard rook-ceph-mgr-dashboard ClusterIP 10.96.135.98 <none> 8443/TCP 3h37m rook-ceph-mgr-dashboard-external-https NodePort 10.97.181.103 <none> 8443:32483/TCP 3h29m [centos@k8s-master ~]$
获取Dashboard的登陆账号和密码
[centos@k8s-master ~]$ MGR_POD=`kubectl get pod -n rook-ceph | grep mgr | awk '{print $1}'` [centos@k8s-master ~]$ kubectl -n rook-ceph logs $MGR_POD | grep password 2019-01-03 05:44:00.585 7fced4782700 0 log_channel(audit) log [DBG] : from='client.4151 10.244.1.2:0/3446600469' entity='client.admin' cmd=[{"username": "admin", "prefix": "dashboard set-login-credentials", "password": "8v2AbqHDj6", "target": ["mgr", ""], "format": "json"}]: dispatch [centos@k8s-master ~]$
找到username和password字段,我这里是admin,8v2AbqHDj6
打开浏览器输入任意一个Node的IP+nodeport端口,这里使用master节点 ip访问:
登录后界面如下:
查看hosts状态:
运行了1个mgr、3个mon和3个osd
查看monitors状态:
查看OSD状态
3个osd状态正常,每个容量50GB.
部署Ceph toolbox
默认启动的Ceph集群,是开启Ceph认证的,这样你登陆Ceph组件所在的Pod里,是没法去获取集群状态,以及执行CLI命令,这时需要部署Ceph toolbox,命令如下:
kubectl apply -f rook/cluster/examples/kubernetes/ceph/ toolbox.yaml
部署成功后,pod如下:
[centos@k8s-master ceph]$ kubectl -n rook-ceph get pods -o wide | grep ceph-tools rook-ceph-tools-76c7d559b6-8w7bk 1/1 Running 0 11s 192.168.92.58 k8s-node2 <none> <none> [centos@k8s-master ceph]$
然后可以登陆该pod后,执行Ceph CLI命令:
[centos@k8s-master ceph]$ kubectl -n rook-ceph exec -it rook-ceph-tools-76c7d559b6-8w7bk bash bash: warning: setlocale: LC_CTYPE: cannot change locale (en_US.UTF-8): No such file or directory bash: warning: setlocale: LC_COLLATE: cannot change locale (en_US.UTF-8): No such file or directory bash: warning: setlocale: LC_MESSAGES: cannot change locale (en_US.UTF-8): No such file or directory bash: warning: setlocale: LC_NUMERIC: cannot change locale (en_US.UTF-8): No such file or directory bash: warning: setlocale: LC_TIME: cannot change locale (en_US.UTF-8): No such file or directory [root@k8s-node2 /]#
查看ceph集群状态
[root@k8s-node2 /]# ceph status
cluster:
id: abddff95-5fa0-47dc-a001-7fb291a42bc6
health: HEALTH_OK
services:
mon: 3 daemons, quorum c,b,a
mgr: a(active)
osd: 3 osds: 3 up, 3 in
data:
pools: 1 pools, 100 pgs
objects: 0 objects, 0 B
usage: 12 GiB used, 129 GiB / 141 GiB avail
pgs: 100 active+clean
[root@k8s-node2 /]#
查看ceph配置文件
[root@k8s-node2 /]# cd /etc/ceph/
[root@k8s-node2 ceph]# ll
total 12
-rw-r--r-- 1 root root 121 Jan 3 11:28 ceph.conf
-rw-r--r-- 1 root root 62 Jan 3 11:28 keyring
-rw-r--r-- 1 root root 92 Sep 24 18:15 rbdmap
[root@k8s-node2 ceph]# cat ceph.conf
[global]
mon_host = 10.104.1.238:6790,10.105.153.93:6790,10.105.107.254:6790
[client.admin]
keyring = /etc/ceph/keyring
[root@k8s-node2 ceph]# cat keyring
[client.admin]
key = AQBjoC1cXKJ7KBAA3ZnhWyxvyGa8+fnLFK7ykw==
[root@k8s-node2 ceph]# cat rbdmap
# RbdDevice Parameters
#poolname/imagename id=client,keyring=/etc/ceph/ceph.client.keyring
[root@k8s-node2 ceph]#
rook提供RBD服务 rook可以提供以下3类型的存储: Block: Create block storage to be consumed by a pod Object: Create an object store that is accessible inside or outside the Kubernetes cluster Shared File System: Create a file system to be shared across multiple pods
在提供(Provisioning)块存储之前,需要先创建StorageClass和存储池。K8S需要这两类资源,才能和Rook交互,进而分配持久卷(PV)。
在kubernetes集群里,要提供rbd块设备服务,需要有如下步骤:
1、创建rbd-provisioner pod
2、创建rbd对应的storageclass
3、创建pvc,使用rbd对应的storageclass
4、创建pod使用rbd pvc
通过rook创建Ceph Cluster之后,rook自身提供了rbd-provisioner服务,所以我们不需要再部署其provisioner。 备注:代码位置pkg/operator/ceph/provisioner/provisioner.go
创建pool和StorageClass 查看storageclass.yaml的配置(默认):
[centos@k8s-master ~]$ vim rook/cluster/examples/kubernetes/ceph/storageclass.yaml
apiVersion: ceph.rook.io/v1
kind: CephBlockPool
metadata:
name: replicapool
namespace: rook-ceph
spec:
replicated:
size: 1
---
apiVersion: storage.k8s.io/v1
kind: StorageClass
metadata:
name: rook-ceph-block
provisioner: ceph.rook.io/block
parameters:
blockPool: replicapool
# Specify the namespace of the rook cluster from which to create volume s.
# If not specified, it will use `rook` as the default namespace of the cluster.
# This is also the namespace where the cluster will be
clusterNamespace: rook-ceph
# Specify the filesystem type of the volume. If not specified, it will use `ext4`.
fstype: xfs
# (Optional) Specify an existing Ceph user that will be used for mounting storage with this StorageClass.
#mountUser: user1
# (Optional) Specify an existing Kubernetes secret name containing just one key holding the Ceph user secret.
# The secret must exist in each namespace(s) where the storage will be consumed.
#mountSecret: ceph-user1-secret
配置文件中包含了一个名为replicapool的存储池,和名为rook-ceph-block的storageClass。
运行yaml文件
kubectl apply -f /rook/cluster/examples/kubernetes/ceph/storageclass.yaml
查看创建的storageclass:
[centos@k8s-master ~]$ kubectl get storageclass NAME PROVISIONER AGE rook-ceph-block ceph.rook.io/block 171m [centos@k8s-master ~]$
登录ceph dashboard查看创建的存储池:
使用存储 以官方 wordpress 示例为例,创建一个经典的wordpress和mysql应用程序来使用Rook提供的块存储,这两个应用程序都将使用Rook提供的block volumes。 查看yaml文件配置,主要看定义的pvc和挂载volume部分,以wordpress.yaml为例:
[centos@k8s-master ~]$ cat rook/cluster/examples/kubernetes/wordpress.yaml ...... --- apiVersion: v1 kind: PersistentVolumeClaim metadata: name: wp-pv-claim labels: app: wordpress spec: storageClassName: rook-ceph-block accessModes: - ReadWriteOnce resources: requests: storage: 20Gi --- ...... volumeMounts: - name: wordpress-persistent-storage mountPath: /var/www/html volumes: - name: wordpress-persistent-storage persistentVolumeClaim: claimName: wp-pv-claim [centos@k8s-master ~]$
yaml文件里定义了一个名为wp-pv-claim的pvc,指定storageClassName为rook-ceph-block,申请的存储空间大小为20Gi。最后一部分创建了一个名为wordpress-persistent-storage的volume,并且指定 claimName为pvc的名称,最后将volume挂载到pod的/var/lib/mysql目录下。 启动mysql和wordpress :
kubectl apply -f rook/cluster/examples/kubernetes/mysql.yaml kubectl apply -f rook/cluster/examples/kubernetes/wordpress.yaml
这2个应用都会创建一个块存储卷,并且挂载到各自的pod中,查看声明的pvc和pv:
[centos@k8s-master ~]$ kubectl get pvc NAME STATUS VOLUME CAPACITY ACCESS MODES STORAGECLASS AGE mysql-pv-claim Bound pvc-5bfbe28e-0fc9-11e9-b90d-000c291c25f3 20Gi RWO rook-ceph-block 32m wp-pv-claim Bound pvc-5f56c6d6-0fc9-11e9-b90d-000c291c25f3 20Gi RWO rook-ceph-block 32m [centos@k8s-master ~]$ kubectl get pv NAME CAPACITY ACCESS MODES RECLAIM POLICY STATUS CLAIM STORAGECLASS REASON AGE pvc-5bfbe28e-0fc9-11e9-b90d-000c291c25f3 20Gi RWO Delete Bound default/mysql-pv-claim rook-ceph-block 32m pvc-5f56c6d6-0fc9-11e9-b90d-000c291c25f3 20Gi RWO Delete Bound default/wp-pv-claim rook-ceph-block 32m [centos@k8s-master ~]$
注意:这里的pv会自动创建,当提交了包含 StorageClass 字段的 PVC 之后,Kubernetes 就会根据这个 StorageClass 创建出对应的 PV,这是用到的是Dynamic Provisioning机制来动态创建pv,PV 支持 Static 静态请求,和动态创建两种方式。 在Ceph集群端检查:
[centos@k8s-master ceph]$ kubectl -n rook-ceph exec -it rook-ceph-tools-76c7d559b6-8w7bk bash ...... [root@k8s-node2 /]# rbd info -p replicapool pvc-5bfbe28e-0fc9-11e9-b90d-000c291c25f3 rbd image 'pvc-5bfbe28e-0fc9-11e9-b90d-000c291c25f3': size 20 GiB in 5120 objects order 22 (4 MiB objects) id: 88156b8b4567 block_name_prefix: rbd_data.88156b8b4567 format: 2 features: layering op_features: flags: create_timestamp: Fri Jan 4 02:35:12 2019 [root@k8s-node2 /]#
登陆pod检查rbd设备:
[centos@k8s-master ~]$ kubectl get pod -o wide
NAME READY STATUS RESTARTS AGE IP NODE NOMINATED NODE READINESS GATES
wordpress-7b6c4c79bb-t5pst 1/1 Running 0 135m 10.244.1.16 k8s-node1 <none> <none>
wordpress-mysql-6887bf844f-9pmg8 1/1 Running 0 135m 10.244.2.14 k8s-node2 <none> <none>
[centos@k8s-master ~]$
[centos@k8s-master ~]$ kubectl exec -it wordpress-7b6c4c79bb-t5pst bash
root@wordpress-7b6c4c79bb-t5pst:/var/www/html#
root@wordpress-7b6c4c79bb-t5pst:/var/www/html# mount | grep rbd
/dev/rbd0 on /var/www/html type xfs (rw,relatime,attr2,inode64,sunit=8192,swidth=8192,noquota)
root@wordpress-7b6c4c79bb-t5pst:/var/www/html# df -h
Filesystem Size Used Avail Use% Mounted on
......
/dev/rbd0 20G 59M 20G 1% /var/www/html
......
登录ceph dashboard查看创建的images
一旦wordpress和mysql pods处于运行状态,获取wordpress应用程序的集群IP并使用浏览器访问:
[centos@k8s-master ~]$ kubectl get svc wordpress NAME TYPE CLUSTER-IP EXTERNAL-IP PORT(S) AGE wordpress LoadBalancer 10.98.178.189 <pending> 80:30001/TCP 136m [centos@k8s-master ~]$
访问wordpress: